Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Segmentation of multiple surfaces in optical coherence tomography (OCT) images is a challenging problem, further complicated by the frequent presence of weak boundaries, varying layer thicknesses, and mutual influence between adjacent surfaces. The traditional graph-based optimal surface segmentation method has proven its effectiveness with its ability to capture various surface priors in a uniform graph model. However, its efficacy heavily relies on handcrafted features that are used to define the surface cost for the “goodness” of a surface. Recently, deep learning (DL) is emerging as a powerful tool for medical image segmentation thanks to its superior feature learning capability. Unfortunately, due to the scarcity of training data in medical imaging, it is nontrivial for DL networks toimplicitlylearn the global structure of the target surfaces, including surface interactions. This study proposes to parameterize the surface cost functions in the graph model and leverage DL to learn those parameters. The multiple optimal surfaces are then simultaneously detected by minimizing the total surface cost whileexplicitlyenforcing the mutual surface interaction constraints. The optimization problem is solved by the primal-dual interior-point method (IPM), which can be implemented by a layer of neural networks, enabling efficient end-to-end training of the whole network. Experiments on spectral-domain optical coherence tomography (SD-OCT) retinal layer segmentation demonstrated promising segmentation results with sub-pixel accuracy.more » « less
- 
            null (Ed.)Positron emission tomography and computed tomography (PET-CT) dual-modality imaging provides critical diagnostic information in modern cancer diagnosis and therapy. Automated accurate tumor delineation is essentially important in computer-assisted tumor reading and interpretation based on PET-CT. In this paper, we propose a novel approach for the segmentation of lung tumors that combines the powerful fully convolutional networks (FCN) based semantic segmentation framework (3D-UNet) and the graph cut based co-segmentation model. First, two separate deep UNets are trained on PET and CT, separately, to learn high level discriminative features to generate tumor/non-tumor masks and probability maps for PET and CT images. Then, the two probability maps on PET and CT are further simultaneously employed in a graph cut based co-segmentation model to produce the final tumor segmentation results. Comparative experiments on 32 PET-CT scans of lung cancer patients demonstrate the effectiveness of our method.more » « less
- 
            null (Ed.)Positron emission tomography and computed tomography (PET-CT) plays a critically important role in modern cancer therapy. In this paper, we focus on automated tumor delineation on PET-CT image pairs. Inspired by co-segmentation model, we develop a novel 3D image co-matting technique making use of the inner-modality information of PET and CT for matting. The obtained co-matting results are then incorporated in the graph-cut based PET-CT co-segmentation framework. Our comparative experiments on 32 PET-CT scan pairs of lung cancer patients demonstrate that the proposed 3D image co-matting technique can significantly improve the quality of cost images for the co-segmentation, resulting in highly accurate tumor segmentation on both PET and CT scan pairs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
